
Exam Numerical Mathematics 1, June 18th 2018, University of Groningen

Use of a simple calculator is allowed. All answers need to be justified.
There are three exercises, detailed on two pages in total. Every exercise will be graded from 1 to
10. To each sub-question in every exercise will be assigned a certain number of points (indicated
in a box at the beginning of each subquestion) such that all subquestions sum up 9 points. The
final grade will be the arithmetic mean of the grades of Exercises 1, 2 and 3.

Exercise 1

Questions (a)-(d) deal with the approximation of the function y(x) = cos(πx) for x ∈ I = [−1, 2].

(a) 2.5 Give the general form of the interpolation polynomial expressed in the Lagrange charac-
teristic polynomials. Then, compute the interpolation polynomial using the following in-
terpolation points x0, x1, x2 ∈ I: x0 = 0, x1 = 1, x2 = 2. Is it possible to find a different
interpolation polynomial from the same set of points {x0, y(x0)}, {x1, y(x1)}, {x2, y(x2)}?
The Lagrange characteristic polynomials are given by

φk(x) =
n∏

j=0
j 6=k

x− xj
xk − xj

(0.5 pts)

and the Lagrange form of the interpolant by

Πn(x) =
n∑

k=0

y(xk)φk(x) (0.5 pts)

Replacing the values for xi, y(xi)

Π3(x) = (1)
x− 1

0− 1

x− 2

0− 2
+ (−1)

x− 0

1− 0

x− 2

1− 2
+ (1)

x− 0

2− 0

x− 1

2− 1
(0.5 pts)

=
1

2
(x− 1)(x− 2) + x(x− 2)

1

2
x(x− 1) = x2(0.5 + 1 + 0.5) + x(−0.5− 1− 2− 0.5) + 1

= 2x2 − 4x+ 1 (0.5 pts)

This is the only possible interpolation polynomial of order 2 from this set of points (0.25 pts),
since uniqueness can be proved (0.25 pts). Other possible answer is: If we do not fix the order of
the polynomial, an infinite number of polynomials can be generated (0.25 pts) by, for instance,
elevating φi(x) to some power (0.25 pts).

(b) 0.5 Give the general formula of the n-th order Taylor expansion around α for some func-
tion f(x). Use it for approximating f(x) = y(x) = cos(πx) around x0 from the following
data: y(x0), y

′(x0), y
′′(x0).

The general formula for the Taylor polynomial reads

Tn(x) = f(α) + f ′(α)(x− α) +
f ′′(α)

2
(x− α)2 + ...+

f (n)(α)

n!
(x− α)n (0.25 pts)

The approximating polynomial using the given information then has the form

T2(x) = y(x0)+y′(x0)(x−x0)+
y′′(x0)

2
(x−x0)2 = 1+0 ·x− π

2 cos(π0)

2
x2 = 1− π

2

2
x2(0.25 pts)

(c) 1.5 Draw y(x) = cos(πx) and the approximating Taylor and Lagrange polynomials, for
x ∈ I. Mark clearly the intersection points of each of the functions with the x− and y−axis,
the (x, y)-positions of their minima and maxima, and the values at the extremes of I.
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(0.5 pts) for each of the curves.

(d) 3.0 For each of the points x = {−0.25, 0, 1, 1.5}, which polynomial (Lagrange or Taylor)
yields the most accurate approximation of y(x)? You can use either the previous plot or
compute the errors. Additionally, comment on the accuracy comparison based on the con-
ditions imposed to build both polynomials.

We will based the answer on the previous plot, but of course specific calculations of the function
vales also are possible.
For x = −0.25, clearly the Taylor approximation is more accurate (0.25 pts). This is since the
Lagrange interpolant is designed to approximate the function between the points x = 0, 1.0, 2.0,
while the Taylor does it around (i.e. at both sides) of the development point, and -0.25 is very
close to it (0.5 pts).
For x = 0, both polynomials are equally accurate (0.25 pts) (and matching indeed) since they
are both designed to match the target function at that point (0.5 pts).
For x = 1, the Lagrange interpolant is more accurate (zero error indeed) (0.25 pts) since it is
designed for matching the function at that point. In contrast, the Taylor approximation is very
inaccurate since the asked point is far from the development point (0.5 pts).
For x = 1.5, the Lagrange interpolant is again more accurate (zero error indeed) (0.25 pts) since
it is designed for approximating the function between x = 1.0 and x = 2. In contrast, the Taylor
approximation is very inaccurate since the asked point is far from the development point (0.5
pts).

Question (e) deal with the numerical integration and it is not related to the previous ques-
tions.

(e) 1.5 We will now define a new composite method to approximate the integral of f(t) over an
interval t ∈ [a, b]. The method consists in – after subdividing [a, b] into an equidistant grid
[a, b] = [t0, t1]∪ · · · ∪ [tN−1, tN ] – approximating the integral on each interval [ti, ti+1] using
the following rule: a trapezoidal formula on [ti, (ti + ti+1)/2] plus a trapezoidal formula on
[(ti + ti+1)/2, ti+1].

Give the composite numerical integration formula of the new method.

Derive an error formula for the new composite method.

Which method is more precise, this new one or the standard composite trapezoidal rule?
Justify this according to the error formulae of both methods.
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Applying the trapezoidal rule for each subinterval we obtain in the interval [ti, ti+1]

1

2

h

2
f(ti)+

1

2

h

2
f(
ti + ti+1

2
)+

1

2

h

2
f(
ti + ti+1

2
)+

1

2

h

2
f(ti+1) =

h

4
f(ti)+

h

2
f(
ti + ti+1

2
)+
h

4
f(ti+1)(0.25 pts)

with h = ti+1 − ti since the grid is defined as equidistant. Then, summing over all the intervals
we obtain the composite form:∫ b

a
f(t) ≈

N−1∑
i=0

h

4
f(ti) +

h

2
f(
ti + ti+1

2
) +

h

4
f(ti+1)(0.25 pts)

The error of the trapezoidal rule is |(b−a)h2f ′′(ξ)/12| (0.25 pts), with ξ ∈ [a, b]. The new method
is indeed equivalent to half the size of the grid elements (0.25 pts), so the same estimates applies
but with h/2 (0.25 pts). Therefore we expect the new method to be more accurate.(0.25 pts)

Exercise 2

Consider the linear system Aεx = b, where Aε is given by:

Aε =

[
ε −1
−1 ε

]
with ε ∈ R.

(a) 1.0 Compute the eigenvalues of Aε. Determine the range of values for ε, such that Aε is
positive definite.

The eigenvalues of Aε are given by:

det

[
ε− λ −1
−1 ε− λ

]
= (ε− λ)2 − 1 = λ2 − 2ελ+ (ε2 − 1) = 0 (0.25 pts)

leads to

λ± =
2ε±

√
4ε2 − 4(ε2 − 1)

2
= ε± 1 (0.25 pts)

λ+ > 0 if ε > −1 and λ− > 0 if ε > 1 (0.25 pts). Therefore, the matrix is positive definite if
ε > 1. (0.25 pts)
Other ways to check positive definiteness are of course valid. But the eigenvalues need the eigen-
values later so computing them here is the shortest way.

(b) 1.0 For ε in the previously computed range, calculate the 2-norm condition number K2(Aε)
of Aε. Then, determine a such that

lim
ε→a

K2(Aε) =∞

Since the matrix is symmetric positive definite

K2(Aε) =
λmax

λmin
=
ε+ 1

ε− 1
(0.5 pts)

It also follows that a = 1 (0.5 pts). There are ways to compute the condition number, the most
general one being K2(Aε) = ‖Aε‖2‖A−1ε ‖2, what is fine if they get to the same result.

(c) 1.5 Compute the LU-factorization of Aε.
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We define the LU factorization such that Aε = LεUε

Aε =

[
ε −1
−1 ε

]
=

[
1 0
` 1

] [
u11 u21
0 u22

]
(0.5 pts)

hence by solving a linear system for `, u11, u21, u22 we obtain

Lε =

[
1 0
−1/ε 1

]
(0.5 pts), Uε =

[
ε −1
0 ε− 1/ε

]
(0.5 pts)

(d) 2.0 We want to solve the linear system Aεx = b via the LU-factorization of Aε, with ε in
the range such that Aε is positive definite. That is, we will first solve Lεy = b and then
Uεx = y.

Compute the Frobenius-norm condition numbers of Lε and Uε.

How does the sensitivity to round-off errors – of the solution procedure using the LU-
factorization – change when ε goes from a very large number to a?

Since L and U are non-symmetric matrices, we should use the general definition of the F-norm
condition number KF (A) = ‖A‖F ‖A−1‖F (0.25 pts).
For Lε, ‖Lε‖F =

√
2 + 1/ε2 (0.25 pts), and ‖L−1ε ‖F =

√
2 + 1/ε2 (0.25 pts). Therefore,

KF (Lε) = 2 + 1/ε2.
For Uε, ‖Uε‖F =

√
ε2 + 1 + (ε− 1/ε)2 (0.25 pts). Then,

U−1ε =

[
ε− 1/ε 1

0 ε

]
1

ε(ε− 1/ε)
=

[
1/ε 1

ε(ε−1/ε)
0 1

ε−1/ε

]
, ‖U−1ε ‖F =

√
1/ε2 +

1

ε2(ε− 1/ε)2
+

1

(ε− 1/ε)2

and hence

KF (Uε) = ‖Uε‖F ‖U−1ε ‖F =
(ε− 1/ε)2 + 1 + ε2

|ε(ε− 1/ε)|
(0.5 pts)

The larger the condition number, the more sensitive will be the results to perturbations (0.25
pts). Therefore, when ε → 1 the solution of the system Lεy = b is less sensitive to round-off
errors, compared with the system Uεx = y, which becomes very sensitive since the condition
number goes to infinity (0.25 pts).

Questions (e)-(f) deal with Richardson iterations and they are not related to the previous
questions.

(e) 2.5 We want to solve the following linear system for x1, x2 by using stationary Richardson
iterations:

C

[
x1
x2

]
=

[
b1
b2

]
, C =

[
2 −1
1 0

]
(4)

Use an initial guess for the solution vector [0, 0]ᵀ.

First write down the stationary Richardson iterations method for any system matrix and
right-hand side. Then, by applying a few Richardson iterations, determine the value of
the stationary relaxation parameter α such that the solution obtained with the Richardson
method matches the exact solution of the linear system in the lowest possible number of
iterations. Why can the optimal value αopt not be applied for this matrix C?
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First, it is easy to verify that the exact solution is given by (0.25 pts)[
x1
x2

]
=

[
b2

2b2 − b1

]
Then, the stationary Richardson method reads (0.50 pts)

Xk = Xk−1 + α

([
b1
b2

]
− CXk−1

)
with Xk the value after the k − th iteration. Given X0 = 0, clearly

X1 = α

[
b1
b2

]
(0.5 pts).

We may converge in one iteration if the exact solution would be proportional to the right-hand-
side, and we could choose α as the proportionality factor. However, this is not the case in this
exercise (0.25 pts). Therefore, we proceed with a second iteration which results

X2 = α

[
b1
b2

]
+ α

([
b1
b2

]
−
[
2 −1
1 0

]
α

[
b1
b2

])
= α

[
2b1
2b2

]
− α2

[
2b1 − b2
b1

]
(0.5 pts)

Clearly, if α = 1 then the Richardson converges in two iterations. (0.25 pts)
The optimal value αopt cannot be applied for this matrix C because it is not symmetric (0.25
pts).

(f) 1.0 Is it possible to directly apply a Jacobi preconditioner to the linear system (4)? If not,
how can we rewrite the system such that we can use a Jacobi preconditioner?

No, because for Jacobi you need to take the inverse the diagonal which is singular(0.5 pts). Since
in our problem the diagonal has a zero, we need to apply pivoting to the original problem first
(0.5 pts).

Exercise 3

Consider a system of ODEs modeling the electrical potential in a cell:{
u′ = c1u(u− α)(1− u)− c2r , u(0) = u0

r′ = c2(u− r) , r(0) = 0
(5)

with u(t) the electrical potential, and r(t) the so called restitution variable. c1, c2 > 0 and
0 < α < 1 are model constants.

(a) 1.0 Discretize (5) in time using the θ-method. Formulate system of equations as a vec-
tor root finding problem G(un+1, rn+1) = 0, and give the explicit form for G. Here,
un ≈ u(tn), rn ≈ r(tn) and assume tn+1 = tn + τ , τ > 0.

Denoting (0.5 pts)

F (u, r) =

[
c1u(u− α)(1− u)− c2r

c2(u− r)

]
The nonlinear system of equations results at each time step: (0.5 pts)[

0
0

]
= G(un+1, rn+1) = −

[
un+1

rn+1

]
+

[
un
rn

]
+ τ(1− θ)F (un, rn) + τθF (un+1, rn+1)

(b) 1.0 Write down the Newton iteration for computing the (k+ 1)-th iterand uk+1
n+1, r

k+1
n+1 from

the k-th iterand ukn+1, r
k
n+1. Do it first in terms if G. Then, give explicit expressions for the
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vectors and matrix involved, but you do not need to invert any matrix.

The general form of the Newton iterations is (0.25 pts):[
un+1

rn+1

]k+1

=

[
ukn+1

rkn+1

]
− [J(ukn+1, r

k
n+1)]

−1G(ukn+1, r
k
n+1)

with J the Jacobian of G.
First, we need to compute the Jacobian of the residual with respect to un+1, rn+1 (0.5 pts):

J(un+1, rn+1) =

[
−1 0
0 −1

]
+ θτ

[
c1((2 + 2α)un+1 − 3(un+1)

2 − α) −c2
c2 −c2

]
The Newton iteration then has the form (0.25 pts)[
un+1

rn+1

]k+1

=

[
ukn+1

rkn+1

]
−[J(ukn+1, r

k
n+1)]

−1
{
−
[
ukn+1

rkn+1

]
+

[
un
rn

]
+ τ(1− θ)F (un, rn) + τθF (ukn+1, r

k
n+1)

}
(c) 1.5 Choose θ as in the forward Euler method. Then, compute two Newton iterations,

namely u1n+1, r
1
n+1 and u2n+1, r

2
n+1: first, using as initial guess u0n+1 = u0, r

0
n+1 = 0, and

second, using u0n+1 = 0, r0n+1 = 0.

The forward Euler method is equivalent to the θ-method with θ = 0 (0.25 pts). Hence, the
Newton iteration simplifies to (0.25 pts)[

un+1

rn+1

]k+1

=

[
un+1

rn+1

]k
+

{
−
[
ukn+1

rkn+1

]
+

[
un
rn

]
+ τF (un, rn)

}
=

[
un
rn

]
+ τF (un, rn)

and therefore u1n+1 = u2n+1,r
1
n+1 = r2n+1 (0.5 pts). The result is also independent of the initial

guess (0.5 pts)

(d) 2.0 Let J denote the Jacobian of the right-hand side of (5) with c1 = c2, evaluated at
(u, r) = (0, 0). Consider now the system of ODEs:

X ′(t) = JX(t) , X(0) = X0 6= 0 (6)

Prove that X(t)→ 0 when t→∞.

We already have computed the needed Jacobian when formulating the Newton method. Indeed,
(0.25 pts) [

c1((2 + 2α)u− 3u2 − α) −c2
c2 −c2

]
which evaluated in (0, 0) leads to (0.25 pts)

J =

[
−αc1 −c2
c2 −c2

]
= c1

[
−α −1
1 −1

]
The eigenvalues λ of J/c1 are given by the equation (0.25 pts)

det

[
−α− λ −1

1 −1− λ

]
= 0

or equivalently (α+ λ)(1 + λ) + 1 = 0, leading to (0.5 pts)

λ =
−(α+ 1)±

√
(α+ 1)2 − 4(α+ 1)

2

since 0 < α < 1, then Re(λ) = −(α + 1)/2 < 0 (0.5 pts). Since also c1 > 0, X(t) is X(t) → 0
when t→∞ (asymptotically stable) (0.25 pts).
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(e) 1.5 Using a backward Euler method, write a linear system of equations for X(τ) in terms
of X(0) = (u0, 0) for a general value of τ . Check if |u(τ)| < |u(0)| for τ = 1/c1.

The backward Euler method for this problem reads (0.5 pts)

X(τ) = X(0) + τJX(τ)

so that the linear system reads
(I− τJ)X(τ) = X(0)

specifically (0.5 pts) [
1 + ταc1 τc1
−τc1 1 + τc1

]
X(τ) =

[
u0
0

]
If τ = 1/c1 [

1 + α 1
−1 2

]
X(τ) =

[
u0
0

]
hence r1 = u1/2, then (1 + α+ 1/2)u1 = u0. Therefore, since α > 0, it holds that |u(τ)| < |u(0)|
(0.5 pts)

(f) 2.0 Discretize problem (6) using the forward Euler method. Derive conditions depending
on τ , c1 and the eigenvalues λ± = a±bi of J/c1 such that X(tk)→ 0 when k →∞. Assume
a < 0.
The forward Euler method for this problem reads (0.5 pts)

Xn+1 = BXn , B = I + τJ

the eigenvalues of B are 1 + τc1λ± (0.5 pts), so that the stability condition reads (0.5 pts)

|1 + τc1λ±| < 1

or equivalently

|1 + τc1λ±|2 = |1 + τc1a± τc1bi|2 = (1 + τc1a)2 + (τc1b)
2 = 1 + 2τc1a+ (τc1a)2 + (τc1b)

2 < 1

namely
2a+ τc1(a

2 + b2) < 0

so that the stability condition on τ results: (0.5 pts)

τ <
−2a

c1(a2 + b2)
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